Oblong Difference Mean Prime Labeling of Some Planar Graphs

Sunoj B S¹, Mathew Varkey T K²

Department of Mathematics, Government Polytechnic College, Attingal, Kerala, India¹
Department of Mathematics, T K M College of Engineering, Kollam, Kerala, India²

Abstract

The labeling of a graph, we mean assign some integers to the vertices or edges (or both) of the graph. Here the vertices of the graph are labeled with oblong numbers and the edges are labeled with mean of the absolute difference of the end vertex values. Here the greatest common incidence number (gcin) of a vertex of degree greater than one is defined as the greatest common divisor of the labels of the incident edges. If the gcin of each vertex of degree greater than one is 1, then the graph admits oblong difference mean prime labeling. Here we investigate some planar graphs for oblong difference mean prime labeling.

Keywords - Graph labeling, oblong numbers, prime graphs, prime labeling, planar graphs.

Introduction

In this paper we deal with graphs that are simple, finite and undirected. The symbol V and E denote the vertex set and edge set of a graph G. The graph whose cardinality of the vertex set is called the order of G, denoted by p and the cardinality of the edge set is called the size of the graph G, denoted by q. A graph with p vertices and q edges is called a (p,q)-graph.

A graph labeling is an assignment of integers to the vertices or edges. Some basic notations and definitions are taken from [1],[2],[3] and [4]. Some basic concepts are taken from Frank Harary [1]. In this paper we investigated the oblong difference mean prime labeling of some planar graphs.

Definition 1.1 Let G be a graph with p vertices and q edges. The the greatest common incidence number (gcin) of a vertex of degree greater than or equal to 2, is the greatest common divisor of the labels of the incident edges.

Definition 1.2 An oblong number is the product of a number with its successor, algebraically it has the form n(n+1). The oblong numbers are 2, 6, 12, 20, --

Main Results

Definition 2.1 Let G be a graph with p vertices and q edges. Define a bijection f : V(G) → \{2,6,12,20,--p(p+1)\} by f(v_i) = i(i+1), for every i from 1 to p and define a 1-1 mapping f*_{odmpt} : E(G) → set of natural numbers N by f*_{odmpt}(uv) = | \frac{f(u)-f(v)}{2} |. The induced function f*_{odmpt} is said to be an oblong difference mean prime labeling, if the gcin of each vertex of degree at least 2, is one.

Definition 2.2 A graph which admits oblong difference mean prime labeling is called an oblong difference mean prime graph.

Definition 2.1 Let G be the obtained by joining each vertex of a cycle to a central vertex by edges. G is called wheel graph and is denoted by W_n.

Theorem: 2.1 Wheel graph W_n admits oblong difference mean prime labeling, if n \equiv 0(mod6).

Proof : Let G = W_n and let v_1,v_2,---,v_{n+1} are the vertices of G. Here |V(G)| = n+1 and |E(G)| = 2n. Define a function f : V → \{2,6,12,--------,(n+2)(n+1)\} by f(v_i) = i(i+1) , i = 1,2,---,n+1.

For the vertex labeling f, the induced edge labeling f*_{odmpt} is defined as follows

\[f*_{odmpt}(v_i v_{i+1}) = (i+1), \quad i = 1,2,--------,n \]
\[f*_{odmpt}(v_i v_n) = \frac{n^2+n-2}{2}, \quad i = 1,2,--------,n \]
\[f*_{odmpt}(v_i v_{n+1}) = \frac{n^2+3n+2-i^2-i}{2}, \quad i = 1,2,--------,n-1 \]

Clearly f*_{odmpt} is an injection.

gcin of (v_1) = \gcd \{ f*_{odmpt}(v_1 v_2) , f*_{odmpt}(v_1 v_{n+1}) \}
= gcd of \(\{2, \frac{n^2+3n}{2}\}\) = 1.

gcin of \((v_{i+1})\) = gcd of \(\{f_{odmpt}^*(v_i v_{i+1}), f_{odmpt}^*(v_{i+1} v_{i+2})\}\)

= gcd of \((i+1, i+2) = 1, i = 1,2,------,n-1\)

gcin of \((v_{n+1})\) = gcd of \(\{f_{odmpt}^*(v_{n} v_{n+1}), f_{odmpt}^*(v_{n+1} v_{n-1})\}\)

= gcd of \((n+1, 2n+1)\)

= gcd of \((n+1, n) = 1\)

So, gcin of each vertex of degree greater than one is 1.

Hence \(W_n\), admits oblong difference mean prime labeling.

Example 2.1 Oblong difference mean prime labeling of wheel graph \(W_6\).

Fig – 2.1

Definition 2.2 Let \(G\) be the graph obtained by joining each vertex of a path \(P_n\) to a central vertex by edges. \(G\) is called fan graph and is denoted by \(F_n\).

Theorem: 2.2 Fan graph \(F_n\) admits oblong difference mean prime labeling, if \(n \not\equiv 0(\text{mod}4)\) and \((n-1)\not\equiv 0(\text{mod}4)\).

Proof: Let \(G = F_n\) and let \(v_1,v_2,-----,v_{n+1}\) are the vertices of \(G\).

Here \(|V(G)| = n+1\) and \(|E(G)| = 2n-1\).

Define a function \(f : V \rightarrow \{2,6,12,------,(n+2)(n+1)\}\) by \(f(v_i) = i(i+1), i = 1,2,------,n+1\).

For the vertex labeling \(f\), the induced edge labeling \(f_{odmpt}^*\) is defined as follows

\[f_{odmpt}^*(v_i v_{i+1}) = (i+1), i = 1,2,------,n\]

\[f_{odmpt}^*(v_i v_{n+1}) = \frac{n^2+3n+2-i^2-i}{2}, i = 1,2,------,n-1\]

Clearly \(f_{odmpt}^*\) is an injection.

So, gcin of each vertex of degree greater than one is 1.

Hence \(F_n\), admits oblong difference mean prime labeling.

Example 2.2 Oblong difference mean prime labeling of fan \(F_6\).

Fig – 2.2

Definition 2.3 Let \(G\) be the graph obtained by adding pendant edges to each vertex on the rim of cycle \(C_n\) of the wheel graph \(W_n\). \(G\) is called helm graph and is denoted by \(H_n\).

Theorem: 2.3 Helm graph \(H_n\) admits oblong difference mean prime labeling.

Proof: Let \(G = H_n\) and let \(v_1,v_2,------,v_{2n+1}\) are the vertices of \(G\).

Here \(|V(G)| = 2n+1\) and \(|E(G)| = 3n\).

Define a function \(f : V \rightarrow \{2,6,12,------,(2n+2)(2n+1)\}\) by \(f(v_i) = i(i+1), i = 1,2,------,2n+1\).

For the vertex labeling \(f\), the induced edge labeling \(f_{odmpt}^*\) is defined as follows

\[f_{odmpt}^*(v_i v_{i+1}) = (i+1), i = 1,2,------,n+1\]

\[f_{odmpt}^*(v_{n+1} v_{n+1}) = \frac{(n+i+2)(n+i+3)-(i+2)(i+3)}{2}, i = 1,2,------,n-2\]

\[f_{odmpt}^*(v_2 v_{n+1}) = \frac{n^2+3n+4}{2}\]
\[f_{odmpl}(v_{i+1} v_{2n+1}) = \frac{(2n+1)(2n+2)-(i+2)(i+1)}{2}, \]
\[i = 1,2,---------n \]

Clearly \(f_{odmpl} \) is an injection.

\(gc \) of \((v_{i+1}) \) = gcd of \{ \(f_{odmpl}(v_i v_{i+1}) \),
\[f_{odmpl}(v_{i+1} v_{i+2}) \] \}
\[= \text{gcd of } \{i+1, i+2\} = 1, \]
\[i = 1,2,---------n \]

So, \(gc \) of each vertex of degree greater than one is 1.

Hence \(H_n \), admits oblong difference mean prime labeling.

Example 2.3 Oblong difference mean prime labeling of helm graph \(H_n \).

Definition 2.4 Let \(G \) be the graph obtained by joining path \(P_n \) to a vertex of cycle \(C_n \). \(G \) is denoted by the symbol \(C_n(P_n) \) and is called tadpole graph.

Theorem: 2.4 Tadpole graph \(C_n(P_n) \) \((n > 3) \) admits oblong difference mean prime labeling, if \((n-1) \neq 0 \text{ (mod} 4) \) and \((n-2) \neq 0 \text{ (mod} 4) \).

Proof: Let \(G = C_n(P_n) \) and let \(v_1, v_2, \cdots, v_{2n-1} \) are the vertices of \(G \).

Here |\(V(G) \)| = 2n-1 and |\(E(G) \)| = 2n-1.

Define a function \(f : V \rightarrow \{2,6,12,\cdots, (2n)(2n-1)\} \) by

\[f(v_i) = i(i+1), \quad i = 1,2,\cdots,2n-1. \]

For the vertex labeling \(f \), the induced edge labeling \(f_{odmpl} \) is defined as follows

\[f_{odmpl}(v_i v_{i+1}) = (i+1), \quad i = 1,2,\cdots,2n-2, \]

\[f_{odmpl}(v_1 v_n) = \frac{n^2+n-2}{2} \]

Clearly \(f_{odmpl} \) is an injection.

\[gc \) of \((v_{i+1}) \) = gcd of \{ \(f_{odmpl}(v_i v_{i+1}) \),
\[f_{odmpl}(v_{i+1} v_{i+2}) \] \}
\[= \text{gcd of } \{2, \frac{n^2+n-2}{2}\} = 1. \]

\[gc \) of \((v_{i+1}) \) = gcd of \{ \(f_{odmpl}(v_i v_{i+1}) \),
\[f_{odmpl}(v_{i+1} v_{i+2}) \] \}
\[= \text{gcd of } \{i+1, i+2\} = 1, \]
\[i = 1,2,\cdots,3n-3 \]

So, \(gc \) of each vertex of degree greater than one is 1.

Hence \(C_n(P_n) \), admits oblong difference mean prime labeling.

Definition 2.5 Let \(G \) be the graph obtained by joining two copies of path \(P_n \) to two consecutive vertices of cycle \(C_n \). \(G \) is denoted by the symbol \(C_n(2P_n) \).

Theorem: 2.5 The graph \(C_n(2P_n) \) admits oblong difference mean prime labeling.

Proof: Let \(G = C_n(2P_n) \) and let \(v_1, v_2, \cdots, v_{3n-2} \) are the vertices of \(G \).

Here |\(V(G) \)| = 3n-2 and |\(E(G) \)| = 3n-2.

Define a function \(f : V \rightarrow \{2,6,12,\cdots, (3n-2)(3n-1)\} \) by

\[f(v_i) = i(i+1), \quad i = 1,2,\cdots,3n-2. \]

For the vertex labeling \(f \), the induced edge labeling \(f_{odmpl} \) is defined as follows

\[f_{odmpl}(v_i v_{i+1}) = (i+1), \quad i = 1,2,\cdots,3n-3, \]

\[f_{odmpl}(v_{2n-1} v_n) = \frac{3n^2-3n}{2} \]

Clearly \(f_{odmpl} \) is an injection.

\(gc \) of \((v_{i+1}) \) = gcd of \{ \(f_{odmpl}(v_i v_{i+1}) \),
\[f_{odmpl}(v_{i+1} v_{i+2}) \] \}
\[= \text{gcd of } \{i+1, i+2\} = 1, \]
\[i = 1,2,\cdots,3n-3 \]

So, \(gc \) of each vertex of degree greater than one is 1.

Hence \(C_n(2P_n) \), admits oblong difference mean prime labeling.

Definition 2.6 Let \(G \) be the graph obtained by joining a path \(P_n \) to the apex vertex of fan \(F_n \). \(G \) is called umbrella graph and is denoted by \(U(n,n) \).

Theorem 2.6 Umbrella graph \(U(n,n) \) \((n > 3) \) admits oblong difference mean prime labeling, if \(n \neq 0 \text{ (mod} 4) \) and \((n-1) \neq 0 \text{ (mod} 4) \).
Proof: Let $G = U(n,n)$ and let v_1, v_2, \ldots, v_{2n} be the vertices of G. Here $|V(G)| = 2n$ and $|E(G)| = 3n-2$.

Define a function $f : V \rightarrow \{2, 6, 12, \ldots, (2n)(2n + 1)\}$ by

$f(v_i) = i(i+1), i = 1, 2, \ldots, n+1$.

For the vertex labeling f, the induced edge labeling f^*_{odmpt} is defined as follows

$f^*_{odmpt}(v_i v_{i+1}) = (i+1), i = 1, 2, \ldots, 2n-1$.

$\left(\frac{n^2+3n+2-i^2-i}{2}\right), i = 1, 2, \ldots, n-1$.

Clearly f^*_{odmpt} is an injection.

gcd of $(v_1) = gcd$ of $\{ f^*_{odmpt}(v_1 v_2) , f^*_{odmpt}(v_1 v_{n+1}) \}$

$= gcd$ of $\{ 2, \frac{n^2+3n+2}{2} \} = 1$.

gcd of $(v_{i+1}) = gcd$ of $\{ f^*_{odmpt}(v_i v_{i+1}) , f^*_{odmpt}(v_{i+1} v_{i+2}) \}$

$= gcd$ of $\{ i+1, i+2 \} = 1, i = 1, 2, \ldots, 2n-2$.

gcd of $(v_{2n-1}) = gcd$ of $\{ f^*_{odmpt}(v_{2n-2} v_1) , f^*_{odmpt}(v_{2n-3} v_{2n-2}) \}$

$= gcd$ of $\{ 2n-2, 2n^2-3n \} = 1$.

So, gcd of each vertex of degree greater than one is 1.

Hence, G admits oblong difference mean prime labeling.

Definition 2.7 Let G be the graph obtained by joining two copies of cycle C_n by an edge. G is called dumbbell graph and is denoted by $D(n,n)$.

Theorem 2.8 Dumbbell graph $D(n,n)$ ($n>3$) admits oblong difference mean prime labeling, if $n \equiv 0 (mod 4)$ and $(n-3) \equiv 0 (mod 4)$.

Proof: Let $G = D(n,n)$ and let v_1, v_2, \ldots, v_{2n} be the vertices of G.

Here $|V(G)| = 2n$ and $|E(G)| = 2n-1$.

Define a function $f : V \rightarrow \{2, 6, 12, \ldots, (2n)(2n + 1)\}$ by

$f(v_i) = i(i+1), i = 1, 2, \ldots, 2n$.

For the vertex labeling f, the induced edge labeling f^*_{odmpt} is defined as follows

$f^*_{odmpt}(v_i v_{i+1}) = (i+1), i = 1, 2, \ldots, 2n-1$.

$\left(\frac{n^2+3n-2-i^2-i}{2}\right), i = 1, 2, \ldots, n-1$.

Clearly f^*_{odmpt} is an injection.

gcd of $(v_1) = gcd$ of $\{ f^*_{odmpt}(v_1 v_2) , f^*_{odmpt}(v_1 v_{n+1}) \}$

$= gcd$ of $\{ 2, \frac{n^2+3n+2}{2} \} = 1$.

gcd of $(v_{i+1}) = gcd$ of $\{ f^*_{odmpt}(v_i v_{i+1}) , f^*_{odmpt}(v_{i+1} v_{i+2}) \}$

$= gcd$ of $\{ i+1, i+2 \} = 1, i = 1, 2, \ldots, 2n-2$.

gcd of $(v_{2n-1}) = gcd$ of $\{ f^*_{odmpt}(v_{2n-2} v_1) , f^*_{odmpt}(v_{2n-3} v_{2n-2}) \}$

$= gcd$ of $\{ 2n-2, 2n^2-3n \} = 1$.

So, gcd of each vertex of degree greater than one is 1.

Hence, $D(n,n)$ admits oblong difference mean prime labeling.

References

1. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1972)
