Note on lexicographical ordering

Authors

Cheng-Tan Tung¹, Shu-Cheng Lin², Peterson Julian³

¹Department of Information Management, Central Police University
²Department of Hospital Management, Lee-Ming Institute of Technology
³Department of Traffic Science, Central Police University

Email: petersonjulian44328@gmail.com

Abstract

Farhadinia (2016) developed a lexicographical ordering with respect to hesitant fuzzy elements. In this article, we will demonstrate that his novel approach fails to satisfy the following three issues: (i) His ranking is contradicted with previous existing results, (ii) His advantages for repeated items is no longer valid after we adjust hesitant fuzzy elements with the same length and (iii) His proof for the component-wise ordering being preserved by his new ranking method is redundant. Our derivations will help researchers realize questionable results of the novel lexicographical ordering proposed by Farhadinia (2016).

Keywords: Lexicographical ordering, Multi-attribute decision making, Hesitant fuzzy element.

1. Introduction

Zadeh [10] constructed fuzzy sets to create a new research topic and then there are more than twenty thousand papers that had been published which were related to fuzzy sets. There are many different generalizations that are with respect to fuzzy sets, for example, hesitant fuzzy sets (HFS) which was introduced Torra [6]. Recently, Torra [6] had been cited by five hundred papers to reveal that HFS attracts attractions from many researchers. The key issue for HFS is the hesitant fuzzy element (HFE). Up to now, many articles tried to decide the order of HFEs. We just list a few in the following: For examples, Wang et al. [7], Xia and Xu [8], Xu and Xia [9], Farhadinia [1,2,4]. In this technical note, we will focus on Farhadinia [4] to present an improvement.

2. Discussion for Farhadinia [4]

We recall important issues in Farhadinia [4] for our later examination. Interested readers please consider the original paper of Farhadinia [4]. Farhadinia [4] assumed that for a hesitant fuzzy element (HFE) \( h(x) \) for \( x \in X \) with cardinal number \( |h| = m \) is denoted as
h = \{\gamma^{(1)}, \gamma^{(2)}, \ldots, \gamma^{(m)}\} to satisfy \(\gamma^{(k+1)} \geq \gamma^{(k)}\) for \(k = 0, \ldots, m-1\).

Xia and Xu [8] assumed the score function by arithmetic mean:

\[
S_{AM}(h) = \frac{1}{m} \sum_{k=1}^{m} \gamma^{(k)}.
\]  

For a HFE, \(h(x)\) as \(h = \{\gamma^{(1)}, \gamma^{(2)}, \ldots, \gamma^{(m)}\}\), Liao et al. [5] defined the derivation function \(v_{hx}\) as

\[
v_{hx}(h) = \left(\frac{1}{m(m-1)} \sum_{i,j=1}^{m} (\gamma^{(i)} - \gamma^{(j)})^2\right)^{1/2}
\]  

In Farhadinia [4], he mentioned that Equation (2) should be revised to

\[
v_{hx}(h) = \left(\frac{2}{m(m-1)} \sum_{i,j=1}^{m} (\gamma^{(i)} - \gamma^{(j)})^2\right)^{1/2}
\]  

In Torra [6], he recalled that

\[h_1 \oplus h_2 = \bigcup_{\gamma_1 \in h_1, \gamma_2 \in h_2} \{\gamma_1 + \gamma_2 - \gamma_1 \gamma_2\}.
\]  

Liao et al. [5] defined a comparison law for two HFEs as follows:
If \(S_{AM}(h_1) > S_{AM}(h_2)\), then \(h_1 > h_2\);
If \(S_{AM}(h_1) = S_{AM}(h_2)\), \(v_{hx}(h_1) > v_{hx}(h_2)\), then \(h_2 > h_1\).

If \(h_1 = \{\gamma^{(1)}_1, \gamma^{(2)}_1, \ldots, \gamma^{(m)}_1\}\) and \(h_2 = \{\gamma^{(1)}_2, \gamma^{(2)}_2, \ldots, \gamma^{(m)}_2\}\) are two HFEs, Farhadinia[2] defined the component-wise ordering of HFEs as

\(h_1 \leq h_2\) if and only if \(\gamma^{(i)}_1 \leq \gamma^{(i)}_2\) for \(1 \leq i \leq m\). (5)

Farhadinia [4] mentioned that the number of values in different HFEs may be different. As assumed in many contributions made to the theory of HFEs (see e.g. [1,2,8,9], Farhadinia [4] extended the HFE with fewer elements by repeating its maximum element until it has the same length with the other HFE.

Farhadinia [4] defined a new deviation for \(h\),

\[
\nu_{\lambda}(h) = \sum_{i=1}^{m-1} \phi(\gamma^{(i+1)} - \gamma^{(i)})
\]  

where \(\phi : [0,1] \rightarrow [0,1]\) increases that is satisfying \(\phi(0) = 0\).

Farhadinia [4] defined a lexicographic order for HFEs. Given an HFE \(h\), the related ranking vector of \(h\) is expressed as \(R(h)\) satisfying

\(R(h) = (S_{AM}(h), \nu_{\lambda}(h))\), where \(S_{AM}(h)\) is assumed by Equation (1) and \(\nu_{\lambda}(h)\) is denoted by Equation (6). Farhadinia [4] assumed his HFE lexicographic order as follows

\(h_1 < h_2\) if and only if \(R(h_1) <_{lex} R(h_2)\).

We recall the Theorem 3.1 of Farhadinia [4] in the following.

**Theorem 3.1**

Let \(h_1 = \{\gamma^{(1)}_1, \gamma^{(2)}_1, \ldots, \gamma^{(m)}_1\}\) and \(h_2 = \{\gamma^{(1)}_2, \gamma^{(2)}_2, \ldots, \gamma^{(m)}_2\}\) are two HFEs with \(\gamma^{(i)}_1 \leq \gamma^{(i)}_2\) for \(i = 1, 2, \ldots, m\). Then, we get \(R(h_1) \leq_{lex} R(h_2)\).

We cite an outline for the proof of Theorem 3.1 from Farhadinia [4].

Farhadinia [4] derived that \(S_{AM}(h_1) \leq S_{AM}(h_2)\) and then he divided the proof into two cases: (a) \(S_{AM}(h_1) < S_{AM}(h_2)\) and (b) \(S_{AM}(h_1) = S_{AM}(h_2)\).

For case (a), it yielded that \(R(h_1) <_{lex} R(h_2)\).

For case (b), he presented a lengthy proof to show that \(\gamma^{(i+1)}_1 - \gamma^{(i)}_1 \leq \gamma^{(i+1)}_2 - \gamma^{(i)}_2\) for \(i = 1, 2, \ldots, m-1\), and then he obtained that \(\phi(\gamma^{(i+1)}_1 - \gamma^{(i)}_1) \leq \phi(\gamma^{(i+1)}_2 - \gamma^{(i)}_2)\) to derive that \(\nu_{\lambda}(h_1) \leq \nu_{\lambda}(h_2)\).
then he obtained that  \( R(h_i) \leq_{\text{lex}} R(h_j) \).

In the next section, we will provide a simple proof for case (b).

3. Our proposed challenges and revisions

In the following, we will provide a simple proof for case (b) of Theorem 3.1 of Farhadinia [4].

From \( \gamma_1^{(i)} \leq \gamma_2^{(i)} \) for \( i=1,2,...,m \) and \( S_{AM}(h_i) = S_{AM}(h_j) \), we imply that \( \gamma_1^{(i)} = \gamma_2^{(i)} \) for \( i=1,2,...,m \). Consequently, \( v_\phi(h_i) = v_\phi(h_2) \) and \( R(h_i) = R(h_2) \) to derive that \( R(h_i) =_{\text{lex}} R(h_2) \).

Remark. The lengthy proof of Farhadinia [4] for \( \gamma_1^{(i+i)} - \gamma_1^{(i)} \leq \gamma_2^{(i+i)} - \gamma_2^{(i)} \), for \( i=1,2,...,m-1 \), is a true statement.

In fact, from our derivations of \( \gamma_1^{(i)} = \gamma_2^{(i)} \) for \( i=1,2,...,m \), and then it is trivial that \( \gamma_1^{(i+i)} - \gamma_1^{(i)} = \gamma_2^{(i+i)} - \gamma_2^{(i)} \), for \( i=1,2,...,m-1 \) to yield that their

\[
\left( \frac{1}{m} \sum_{i=1}^{m} (\gamma_i^{(i)} - \gamma_j^{(i)})^2 \right)^{1/2} = c_1 \left( \frac{2}{m(m-1)} \sum_{i=1}^{m} (\gamma_i^{(i)} - \gamma_j^{(i)})^2 \right)^{1/2},
\]

\[
\left( \frac{2}{m(m-1)} \sum_{i=1}^{m} (\gamma_i^{(i)} - \gamma_j^{(i)})^2 \right)^{1/2} = c_2 \left( \frac{1}{m(m-1)} \sum_{i=1}^{m} (\gamma_i^{(i)} - \gamma_j^{(i)})^2 \right)^{1/2},
\]

and

\[
\left( \frac{1}{m(m-1)} \sum_{i=1}^{m} (\gamma_i^{(i)} - \gamma_j^{(i)})^2 \right)^{1/2} = c_3 \left( \frac{2}{m(m-1)} \sum_{i=1}^{m} (\gamma_i^{(i)} - \gamma_j^{(i)})^2 \right)^{1/2}.
\]

with \( c_1 = \sqrt{\frac{m-1}{2}} \), \( c_2 = \sqrt{2} \) and \( c_3 = 1 \) such that

4. Review of numerical examples of Farhadinia [4]

Farhadinia [4] provided two examples. For the first one with three HFEs:

\[
h_1 = \{0.1,0.3,0.3,0.3,0.3,0.5\}, \quad h_2 = \{0.1,0.3,0.3,0.3,0.5\} \quad \text{and} \quad h_3 = \{0.1,0.3,0.5\}.
\]
He derived that by Equation (1),
\[ S_{AM}(h_1) = S_{AM}(h_2) = S_{AM}(h_3) = 0.3, \]  
and by Equation (8),
\[ \nu_{lx}(h_1) = \frac{3}{\sqrt{75}}, \nu_{lx}(h_2) = \frac{4}{\sqrt{75}}, \text{ and } \nu_{lx}(h_3) = \frac{6}{\sqrt{75}}, \]
(15)
to imply that \( h_1 > h_2 > h_3. \)  

**Remark**

The computations of Equation (6) are consistent with our assertions of (8) or (9) to demonstrate that our revision for Equation (3) is valid. Farhadinia [4] used his approach of Equation (6) to yield that
\[ \nu_\phi(h_1) = \nu_\phi(h_2) = \nu_\phi(h_3) = 2\phi(0.2) \]
(17)
to imply that
\[ R(h_1) = R(h_2) = R(h_3) \]
(18)
Farhadinia [4] concluded that his approach has the advantage that is invariant with respect to multiple occurrences of \( 0.3. \)

For his second numerical example, there are three HFEs:
\[ h_4 = \{0.1,0.5\}, \quad h_5 = \{0.1,0.2,0.4,0.5\} \text{ and } h_6 = \{0.1,0.2,0.3,0.4,0.5\}. \]
(19)
With \( \phi(t) = t^2, \) Farhadinia [4] derived that
\[ R(h_4) = (0.3,0.16) >_{\alpha_4} R(h_5) = (0.3,0.06) >_{\alpha_5} R(h_6) = (0.3,0.04) \]
(20)
to imply that \( h_4 > h_5 > h_6. \)
(21)
He also mentioned that if he extended the length of \( h_4 \) and \( h_5 \) by the optimistically by repeating their maximum element until they have the same length with \( h_6, \) then \( h_4 = \{0.1,0.5,0.5,0.5,0.5\} \text{ and } h_5 = \{0.1,0.2,0.4,0.5,0.5\} \) to yield
\[ S_{AM}(h_4) = 0.42 > S_{AM}(h_5) = 0.34 > S_{AM}(h_6) = 0.3 \]
(22)
to imply that \( h_4 > h_5 > h_6. \)
(23)
that is consistent with his result of Equation (21).

**5. Our discussion for his numerical examples**

We recall that \( S_{AM}(h) \) is the arithmetic mean to represent the tendency of data and \( \nu_{lx}(h) \) measures the derivation among data, the smaller the better. It is the common approach. Our recall is consistent with the definition of Liao et al. [5]. However, the lexicographic order proposed by Farhadinia [4] assumed that \( S_{AM}(h_4) = S_{AM}(h_5), \)
\[ \nu_\phi(h_4) < \nu_\phi(h_5), \text{ then } h_4 < h_5. \]

We construct three HFEs:
\[ h_7 = \{0.0,0.6\}, \quad h_8 = \{0.1,0.5\} \text{ and } h_9 = \{0.2,0.4\}. \]
(24)
to find that
\[ S_{SM}(h_7) = S_{AM}(h_8) = S_{AM}(h_9) = 0.3 \]
(25)
and
\[ \nu_\phi(h_7) = \nu_\phi(h_8) = 0.16 > \nu_\phi(h_9) = 0.04 \]
(26)
with \( \phi(t) = t^2, \) and then by the lexicographic order proposed by Farhadinia [4] to imply that \( h_7 < h_8 < h_9. \)
(27)
However, we can observe that data from \( h_9 \) is more accumulated around the mean \( 0.3 \) than \( h_8 \)
and $h_i$. Hence, intuitively researcher should expect that
\[ h_i < h_b < h_y. \]  
(28)

If we compute
\[ \nu_{\lambda x}(h_i) = 0.6 > \nu_{\lambda x}(h_b) = 0.4 > \nu_{\lambda x}(h_y) = 0.2. \]  
(29)

By the comparison law of Liao et al. \[5,\] then
\[ h_i < h_b < h_y, \]  
(30)

that is consistent with intuition of Equation (28).

From the above discussion, we can say that the lexicographic order proposed by Farhadinia \[4\] is questionable.

For his first example, if we follow his approach for HFES $h_4, h_5$ and $h_6$ to extend $h_2$ and $h_3$ to the length of $h_1$, then
\[ \vec{h}_2 = \{0.1,0.3,0.3,0.5,0.5\} \]  
and
\[ \vec{h}_3 = \{0.1,0.3,0.5,0.5,0.5\}, \]  
(31)

to imply that
\[ S_{SM}(h_1) = 0.3 < S_{AM}(\vec{h}_2) = 0.34 < S_{AM}(\vec{h}_3) = 0.38 \]  
(32)
such that the claim of Farhadinia \[4\] the invariant property is no longer valid.

For his second numerical example, we observe $h_4, h_5$ and $h_6$ to find out that $h_6$ is more clustering around the mean 0.3 such that we will provide a revision for the lexicographic ordering proposed by Farhadinia \[4\] as follows,

If $S_{AM}(h_1) < S_{AM}(h_2)$, then $h_1 < h_2$.

If $S_{AM}(h_1) = S_{AM}(h_2), \nu \phi(h_1) > \nu \phi(h_2)$, then $h_1 < h_2$.

Based on our revision, we recall the result of Equation (20) in the following,
\[ S_{AM}(h_4) = S_{AM}(h_5) = S_{AM}(h_6) = 0.3 \]  
(33)

and
\[ \nu \phi(h_4) = 0.16 > \nu \phi(h_5) = 0.06 > \nu \phi(h_6) = 0.04 \]  
(34)
to imply that
\[ h_4 < h_5 < h_6, \]  
(35)

that is consistent with our intuition and the derivation of Liao et al. \[5\] as
\[ \nu_{\lambda x}(h_4) = \frac{4}{10} > \nu_{\lambda x}(h_5) = \frac{\sqrt{35/6}}{10} > \nu_{\lambda x}(h_6) = \frac{5}{10}. \]  
(36)

6. Conclusion

We find three doubtful results in Farhadinia \[4\] with respect to his lexicographic ordering. Hence, we can advise researchers pay attention to the lexicographic ordering when applying this questionable ordering in their researches.

Acknowledgements

Authors greatly appreciated English revisions by Kaye Lee (kayetanlee@gamil.com) and the financial support from MOST 105-2410-H-015-006.

References

3. B. Farhadinia, A series of score functions for


