
 
 

D. Sasi Redkha, et al                                       www.ijetst.in  Page 5891 

IJETST- Vol.||04||Issue||09||Pages 5891-5897||September||ISSN 2348-9480 2017 

International Journal of Emerging Trends in Science and Technology 

IC Value: 76.89 (Index Copernicus) Impact Factor: 4.219 DOI: https://dx.doi.org/10.18535/ijetst/v4i9.06 

 

Big Data Cluster Processing Through Optimized Speculative Execution 
 

Authors 

D. Sasi Redkha
1
, T.N. Ranganadham2, Dr. M. Rudra Kumar3 

1
M.Tech., Dept of CSE,Annamacharya Institute Of Technology & Sciences, Rajampet, Kadapa. 

2
Assistant Professor, Dept of CSE,Annamacharya Institute Of Technology & Sciences, Rajampet, Kadapa. 

3
Professor, Dept of CSE, Annamacharya Institute Of Technology & Sciences, Rajampet, Kadapa. 

 

Abstract A big parallel processing job can be delayed substantially as long as one of its many tasks is 

being assigned to an unreliable or congested machine. To tackle this so-called straggler problem, most 

parallel processing frameworks such as MapReduce have adopted various strategies under which the 

system may speculatively launch additional copies of the same task if its progress is abnormally slow 

when extra idling resource is available. In this paper, we focus on the design of speculative execution 

schemes for parallel processing clusters from an optimization perspective under different loading 

conditions. For the lightly loaded case, we analyze and propose one cloning scheme, namely, the Smart 

Cloning Algorithm (SCA) which is based on maximizing the overall system utility. We also derive the 

workload threshold under which SCA should be used for speculative execution. For the heavily loaded 

case, we propose the Enhanced Speculative Execution (ESE) algorithm which is an extension of the 

Microsoft Mantri scheme to mitigate stragglers. Our simulation results show SCA reduces the total job 

flowtime, i.e., the job delay/ response time by nearly 6% comparing to the speculative execution strategy 

of Microsoft Mantri. In addition, we show that the ESE Algorithm outperforms the Mantri baseline 

scheme by 71% in terms of the job flowtime while consuming the same amount of computation resource.   
Keywords:Job scheduling, speculative execution, cloning, straggler detection, optimization. 

 

1.  Introduction 

EMPIRICAL performance studies of large-scale 

computing clusters have indicated that the completion 

time of a job [7] is often significantly and 

unnecessarily prolonged by one or a few so-called 

“stragglers” or straggling tasks, i.e., tasks which are 

unfortunately assigned to either a failing or overloaded 

server within a cluster of hundreds of thousands of 

commodity servers. To mitigate stragglers, recent big 

data frameworks such as the MapReduce system or its 

variants have adopted various preventive or reactive 

speculation strategies under which the system launches 

extra (backup) copies of a task on alternative machines 

in a judicious manner. In particular, there exist two 

main classes of speculative execution strategies, 

namely, the Cloning approach [5] and the Straggler-

Detection-based one [6], [7], [13], [16], [20], [32], [35], 

[41]. Under the Cloning approach, extra copies of a task 

are scheduled in parallel with the initial task as long as 

the computation cost of the task is expected to be low 

and the system resource is available. For the Straggler-

Detectionbased approach, the progress of each task is 

monitored by the system and backup copies are 

launched only when a straggler is detected. 

As one may expect, the cloning-based strategy is only 

suitable for a lightly loaded cluster as it launches the 

clones in a greedy, indiscriminately fashion. On the 

other hand, the straggler-detection based strategy is 



 
 

D. Sasi Redkha, et al                                       www.ijetst.in  Page 5892 

IJETST- Vol.||04||Issue||09||Pages 5891-5897||September||ISSN 2348-9480 2017 

applicable to both the lightly-loaded and heavily-

loaded regimes but at the expense of extra system 

instrumentation and performance overhead as 

discussed in [10]. The situation is particularly 

challenging when the progress of a large number of 

tasks have to be tracked. However, previous works do 

not compare the performance between these two 

different speculation approaches. Furthermore, most of 

the existing speculative execution schemes are based 

on simple heuristics and do not consider the 

optimization based on specific performance objectives. 

With the aforementioned observations in mind, in this 

paper, we take a more systematic, optimization-based 

approach for the design and analysis of speculative 

execution schemes. Our objective is to optimize two 

performance metrics which are the total job delay/ 

response time (which is also referred as job flowtime) 

and the computation cost by defining a utility function. 

The optimizations are conducted by coordinating 

speculating with job scheduling, which is an 

opportunity to gain significant performance 

improvement compared to speculation-only policies. 

We also characterize the differences between the 

Cloning approach and the Straggler-Detection based 

speculative execution scheme through both theoretical 

analysis and extensive simulations. 

II Literature Survey 

Job scheduling in a MapReduce-like cluster 

In a big data processing cluster like MapReduce and its 

variants or derivatives, different applications/ jobs 

need to share and compete for resources in the cluster. 

Thus, job scheduling plays a very important role. 

Throughout the whole paper, we only consider the 

centralized scheduling paradigm under which a global 

scheduler of the cluster manages all jobs where each 

job may consist of many small tasks. The scheduler 

allocates resources across jobs and also 

handles straggling tasks. Widely deployed schedulers 

to-date include the fair scheduler [4] and the capacity 

scheduler [3]. However, the main goal of these 

schedulers is to provide fair and efficient resource 

sharing among different organizations. As such, other 

key performance metrics such as the job response time 

have not received adequate considerations under their 

designs. To enhance system performance, the design of 

job schedulers for MapReduce-like systems has been an 

active research area lately [11], [12], [23], [25], [36], 

[40], [42]. In particular, several works focus on deriving 

performance bounds for minimizing the total job 

completion time [11], [12], [40]. Tan et al. design the 

Coupling scheduler [36], which mitigates the starvation 

problem caused by reduce tasks in large jobs. It is well 

known in scheduling literature that the SRPT (Shortest 

Remaining Processing Time) scheduler is optimal for 

the overall flowtime on a single machine where there is 

one task per job. As such, some works extend the SRPT 

scheduler to minimize the total job flowtime under 

different settings [23], [25], [40], [42]. However, all of 

these studies assume accurate knowledge of task 

durations and hence do not support speculative copies 

to be scheduled dynamically. 

Speculative Execution Policies 

Several speculative execution strategies have been 

proposed for MapReduce-like systems. The initial 

Google MapReduce system only begins to launch 

backup tasks when a job is close to completion. It has 

been shown that speculative execution can decrease the 

job service time by nearly 44% [16]. This scheme is 

easy to implement but it would unnecessarily launch 

backup copies for tasks of normal progress. The 



 
 

D. Sasi Redkha, et al                                       www.ijetst.in  Page 5893 

IJETST- Vol.||04||Issue||09||Pages 5891-5897||September||ISSN 2348-9480 2017 

speculative execution strategies in the initial versions 

of Hadoop [2] and Microsoft Dryad [20] closely 

follow that of the Google MapReduce system. 

However, Zaharia et al. present a new strategy called 

LATE (Longest Approximate Time to End) in [41] for 

the Hadoop-0.21 implementation. It monitors the 

progress rate of each task and estimates their 

remaining time to completion. Tasks with progress rate 

below certain threshold are chosen as backup 

candidates and the one with the longest remaining time 

is given the highest priority. The system also imposes 

a limit on the maximum number of backup tasks in the 

cluster. In contrast, Microsoft Mantri [7] proposes a 

new speculative execution strategy for Dryad in which 

the system estimates the remaining time to finish (i.e., 

trem), for each task and predicts the required service 

time of a relaunched copy of the task (i.e., tnew). Once 

a server becomes available, the Mantri system makes a 

decision on whether to launch a backup task based on 

the statistics of trem and tnew. Mantri would schedule 

a duplicate if the total computation cost is expected to 

decrease while it does not explore the tradeoffs 

between the job completion time (flowtime) and the 

computation cost. To accurately and promptly identify 

stragglers, Chen et al. propose a Smart Speculative 

Execution strategy in [13] and Sun et al. present an 

Enhanced Self-Adaptive MapReduce Scheduling 

Algorithm in [35]. The main ideas of [13] include: i) 

use the exponentially weighted moving average to 

predict the process speed and compute the remaining 

time of a task and ii) determine which task to backup 

based on the load of a cluster using a cost-benefit 

model. The limitation is that those works only focus on 

the optimization of task level rather than job level 

performance. Ananthanarayanan et al. proposes to 

mitigate the straggler problem by cloning every small 

job and avoid the extra delay caused by the straggler 

monitoring/ detection process [5]. When most of the 

jobs in the system are small, the cloned copies only 

consume a small amount of additional resources. As an 

extension from [5], Ananthanarayanan further presents 

GRASS [6], which carefully adopts the Detection-based 

approach to trim stragglers for approximation jobs. 

GRASS also provides a unified solution for normal 

jobs. Recently, Ren et al. propose Hopper [32], a 

speculation aware scheduler, which coordinates job 

scheduling with speculative execution. In Hopper, the 

scheduler allocates computing slots based on the virtual 

job size, which is larger than the actual size, and can 

immediately schedule a speculative copy once a 

straggler is detected. For most of the speculative 

execution schemes presented above, the speculation 

algorithms are designed independently of job 

scheduling. Hopper and the recently proposed 

SRPTMS+C [39] are the only exceptions. However, 

Hopper still has several downsides that can degrade the 

cluster performance. Firstly, Hopper is non-work-

conserving: it is possible for its scheduler to keep a 

computing slot idle as a reservation for a future 

straggler while other jobs/ tasks already queue up for 

computation resource 1. Secondly, the job size is 

computed/ estimated based on only the number of tasks 

instead of taking the product with the task service time 

(i.e. the time between the task is launched and the task 

is finished). In practice, the task service times have 

shown to be varying widely even among tasks of the 

same job. (e.g., a Map task vs. a Reduce task). As a 

comparison, in our work, we incorporate the task 

service time when estimating the job size. Moreover, 

SRPTMS+C is limited to investigate the cloning 



 
 

D. Sasi Redkha, et al                                       www.ijetst.in  Page 5894 

IJETST- Vol.||04||Issue||09||Pages 5891-5897||September||ISSN 2348-9480 2017 

approach only whereas the work in this paper 

combines job scheduling with speculative execution 

and judiciously applies proactive cloning or reactive 

speculation under different operating regimes. Another 

body of work related to this paper investigate a study 

on the effectiveness of scheduling redundant copies 

from a queuing perspective. In particular, Vulimiri et 

al. characterize when a global redundancy policy 

improves latency performance of the whole system 

[38]. However, this work does not consider killing the 

unfinished copies of the same task. Chen et al. adopts 

the approach of redundant requests in storage codes 

and theoretically analyzes its optimality when the 

service time of each request is exponentially 

distributed [14]. Based on these works, Qiu et al. adopt 

the MAP model to represent task arrivals and study the 

distribution of task-response time when redundancy is 

applied [27]–[30]. Moreover, Kristen et al. present in 

[17] an exact analysis of systems with redundancy 

when the service time for the redundant class follows 

an exponential distribution. One fundamental 

limitation of [14], [17], [27]–[30] is that they do not 

theoretically characterize the efficiency of redundancy 

when the task service time follows a more general 

distribution. Besides exponential distribution, [21] and 

[34] also analyze how different redundancy strategy 

can influence the latency and the computation cost 

when the job service time follows a heavy-everywhere 

or light everywhere distribution. However, their 

derived results do not hold when the service time 

follows other hevay-tailed distributions (e.g., the 

Pareto Distribution) and thus cannot be applied to our 

work. 

 

III. Proposed Work 

In this paper we propose the design of speculative 

execution schemes for parallel processing clusters 

from an optimization perspective under different 

loading conditions. For the lightly loaded case, we 

analyze and propose one cloning scheme, namely, the 

Smart Cloning Algorithm (SCA) which is based on 

maximizing the overall system utility. We also derive 

the workload threshold under which SCA should be 

used for speculative execution. For the heavily loaded 

case, we propose the Enhanced Speculative 

Execution (ESE) algorithm which is an extension of 

the Microsoft Mantri scheme to mitigate stragglers. 

Our simulation results show SCA reduces the total 

job flowtime, i.e., the job delay/ response time by 

nearly 6% comparing to the speculative 

execution strategy of Microsoft Mantri. In addition, 

we show that the ESE Algorithm outperforms the 

Mantri baseline scheme by 71% in terms of the job 

flowtime while consuming the same amount of 

computation resource. 

IV Methodology 
Smart Cloning Algorithm (SCA):- 

The SCA algorithm consists of two separate parts. At 

the beginning of each time slot, we first schedule the 

remaining tasks of unfinished jobs and then check 

whether the computation resource is available. If it is 

available we will determine  number of clones for 

each task. Otherwise, we will clone each task exactly 

once and sort the set of unscheduled jobs, according 

to the increasing order of the workload. 



 
 

D. Sasi Redkha, et al                                       www.ijetst.in  Page 5895 

IJETST- Vol.||04||Issue||09||Pages 5891-5897||September||ISSN 2348-9480 2017 

 

Fig: heavily loaded cluster 

Design details of ESE:- 

Our ESE Algorithm includes three scheduling 

levels. At the beginning of time slot l, the scheduler 

estimates the remaining time of each running task 

and puts the tasks whose remaining time satisfies the 

constraint of P3 in the backup candidate set. 

The scheduler then schedules the remaining tasks of 

the jobs which have already been scheduled but have 

not left the cluster yet this are  set of unfinished jobs 

at time slot l and the jobs are sorted based on 

remaining workloads. Upon scheduling, the jobs 

which have smaller remaining workload are given 

the higher priorities. The number of available 

machines, i.e., N(l) is updated after the 

aforementioned scheduling and the scheduler 

proceeds to allocate machines to these unscheduled 

jobs. To be specific, denote all the jobs that have not 

been scheduled yet where the jobs are sorted based 

on their non-decreasing order of workloads. The 

scheduler launches one copy for each task  if there 

are available machines. 

 

Fig: lightly loaded cluster 

V. Conclusion 

In our proposed work attempt to combine job 

scheduling and speculative execution for the design 

of redundancy algorithms in big data processing 

clusters. More importantly, we focus on two key 

performance metrics which are the average job 

flowtime and the overall system computation costs. 

By utilizing the distribution information of the task 

service time, we build an optimization framework to 

maximize the overall system utility. We then design 

two approximation algorithms to tackle this 

optimization problem, i.e., the SCA Algorithm and 

ESE Algorithm, corresponding to the cloning-based 

and detection-based approaches respectively. To 

differentiate the applicability of these two algorithms, 

we also categorize the cluster into the lightly loaded 

and heavily loaded cases and derive the cutoff 

threshold for these two operating regimes. 

Future Work: 

       As future work, we will design speculative 

execution schemes for more complex jobs which can 

have additional task-dependency constraints. In 

addition, we plan to characterize the theoretical 

performance bounds of our proposed redundancy 

algorithms.  

 



 
 

D. Sasi Redkha, et al                                       www.ijetst.in  Page 5896 

IJETST- Vol.||04||Issue||09||Pages 5891-5897||September||ISSN 2348-9480 2017 

Reference 

1. Residual lives, hazard rates, and long tails. 

2. Apache. http://hadoop.apache.org, 2013. 

3. Capacity Scheduler.  

http://hadoop.apache.org/ 

docs/r1.2.1/capacity scheduler.html, 2013. 

4. Fair Scheduler.  

http://hadoop.apache.org/docs/r1.2.1/fair 

scheduler.html, 2013. 

5. G. Ananthanarayanan, A. Ghodsi, S. 

Shenker, and I. Stoica. Effective straggler 

mitigation: Attack of the clones. In NSDI, 

April 2013. 

6. G. Ananthanarayanan, M. C.-C. Hung, X. 

Ren, and I. Stoica. Grass: Trimming 

stragglers in approximation analytics. In 

NSDI, April 2014. 

7. G. Ananthanarayanan, S. Kandula, A. 

Greenberg, I. Stoic, Y. Lu, B. Saha, and E. 

Harris. Reining in the outliers in MapReduce 

clusters using mantri. In USENIX OSDI, 

Vancouver, Canada, October 2010. 

8. D. P. Bertsekas. Nonlinear Programming: 

2nd Edition. Athena Scientific, 1999. 

9. [9] S. Boyd, N. Parikh, E. Chu, B. Peleato, 

and J. Eckstein. Distributed optimization and 

statistical learning via the alternating 

direction method of multipliers. Foundations 

and Trends® in Machine Learning, 4:1–122, 

January 2011. 

10. D. Breitgand, R. Cohen, A. Nahir, and D. 

Raz. On cost-aware monitoring for self-

adaptive load sharing. IEEE JSAC, 

28(1):70–83, January 2010. 

11. H. Chang, M. Kodialam, R. R. Kompella, T. 

V. Lakshman, M. Lee, and S. Mukherjee. 

Scheduling in MapReduce-like systems for 

fast completion time. In Proceedings of IEEE 

Infocom, pages 3074–3082, March 2011. 

12. F. Chen, M. Kodialam, and T. Lakshman. 

Joint scheduling of processing and shuffle 

phases in MapReduce systems. In 

Proceedings of IEEE Infocom, March 2012. 

13. Q. Chen, C. Liu, and Z. Xiao. Improving 

MapReduce performance using smart 

speculative execution strategy. IEEE 

Transactions on Computers, 63(4), April 

2014. 

14. S. Chen, Y. Sun, U. C. Kozat, L. Huang, P. 

Sinha, G. Liang, X. Liu, and N. B. Shroff. 

When queueing meets coding: Optimal-

latency data retrieving scheme in storage 

clouds. In Infocom, April 2014. 

15. R. B. Cooper. Introduction to queuing theory. 

The Macmillan Company, New York, 1972. 

16. J. Dean and S. Ghemawat. MapReduce: 

simplified data processing on large clusters. In 

OSDI, pages 137–150, December 2004. 

17. K. Gardner, S. Zbarsky, S. Doroudi, M. 

Harchol-Balter, and E. H. Aalto. Reducing 

latency via redundant requests: Exact 

analysis. pages 347–360. ACM 

SIGMETRICS, June 2015. 

18. M. Harchol-Balter. Performance Modeling 

and Design of Computer Systems: Queueing 

Theory in Action. Cambridge University 

Press, 2013. 

19. M. Hong and Z.-Q. Luo. On the linear 

convergence of the alternating direction 

http://hadoop.apache.org/docs/r1.2.1/fair


 
 

D. Sasi Redkha, et al                                       www.ijetst.in  Page 5897 

IJETST- Vol.||04||Issue||09||Pages 5891-5897||September||ISSN 2348-9480 2017 

method of multipliers. In arXiv:1208.3922, 

August 2012. 


