

A. Mahdoum www.ijetst.in Page 8064

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

International Journal of Emerging Trends in Science and Technology

DOI: http://dx.doi.org/10.18535/ijetst/v2024.04

P  NP: A Formal Proof

Author

A. Mahdoum

Centre de Développement des Technologies Avancées, Cité 20 Août 1956, Baba Hassan, Algiers, Algeria,

Department of computer science, University Saad Dahlab of Blida, Algeria

Abstract

According to the conjecture that P  NP, we recall in this paper that class NP includes P, NP-
intermediate and NP-complete problems (some of Co-NP and NP-hard problems also belong to NP). It is

obvious that if a single problem belonging to NP is formally proved non-polynomial, then P  NP no

longer remains a conjecture but rather becomes a formal statement. In this purpose, we formally prove

that the Graph-isomorphism problem (belonging to class NP) is non-polynomial time, which leads that P

 NP is a formal statement, not a conjecture.
Keywords: NP complete problems, NP hard problems, NP-intermediate problems, polynomial-time

problems, P  NP

1 Introduction

In this paper we prove that P  NP is not a conjecture. As this research problem is fundamental and not yet

solved, we only recall, in section 2, the fundamental notions of NP-completeness
[1]

. Then, in section 3, we

formally prove that the Graph-isomorphism problem is not time-polynomial. As this problem is known as

belonging to the NP class
[2]

), then it is obvious to formally claim that P  NP is not a conjecture. Finally, we

conclude the paper.

Areas:

- 68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.)

- 68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of

approximation, etc.)

2 Fundamental Notions on NP-Completeness

2.1 Computational complexity

2.1.1 Introduction

The execution time of a program depends on several factors:

- Program data: for example, sorting out about ten numbers requires less execution time than sorting

out millions of numbers;

- Quality of the code generated by the compiler: codes generated by programming languages do not

have the same quality (it is the case of C, C++ and Java: if the application is not object-oriented and

it would be executed on a given platform, it is better to implement it in C, which generates a

“lighter” code);

A. Mahdoum www.ijetst.in Page 8065

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

- Computational complexity: this metrics gives the developer an idea of the execution time of his

program, independently of programming language and platform (processor, memory capacity, etc.).

Computational complexity is therefore an important concept, all the more so as it offers the

developer an indication on whether his program takes a reasonable CPU time to reach results, even

when significant resources (processor frequency, memory capacity) are at his disposal. In other

terms, it may signal the designer the need to modify his algorithm, if it takes an "infinite" time to

reach results.

2.1.2 Big O notation

Definition: Computational complexity T(n) is O(f(n)) if there are constants c and n0 such that: T(n)  c *

f(n)  n  n0; c > 0; n0  0

Example 2.1: T(n) = (n+1)
2

T(n) is O(n
2
). Indeed, T(n)  4 * n

2
  n  1 (c=4; n0=1)

We will subsequently see how the function T(n) associated with a given algorithm can be determined.

Example 2.2: Consider T(n) = n
2
+n. Is it possible to consider that T(n) is O(n) ?

If yes, we would have: n
2
+n  c * n  n

2
+n(1-c)  0  n(n+1-c)  0. Since n  0, we would have: c  n+1

 c is not a constant and therefore T(n) is not O(n).

2.1.2.1 Sum

If T1(n) is O(f(n)) and T2(n) is O(g(n)), then T1(n)+ T2(n) is O(max(f(n),g(n)))

Proof:

T1(n) is O(f(n))   c1 > 0, n1  0: T1(n)  c1 f(n)  n  n1  T1(n)  c1 max(f(n), g(n))  n  n1

T2(n) is O(g(n))   c2 > 0, n2  0: T2(n)  c2 g(n)  n  n2  T2(n)  c2 max(f(n), g(n))  n  n2

  T1(n) + T2(n)  (c1 + c2) max(f(n),g(n))  n  max(n1, n2)

Generally speaking, if Ti(n)  ci fi(n)  n  ni ; i=1, 2, …, p then:

         
























 nfOisnTnncnfnT i
pi

p

i

ii
pi

p

i

ii
pi

p

i

i
1

1
1

1
1

1

maxmaxmax

2.1.2.2 Product

If T1(n) is O(f(n)) and T2(n) is O(g(n)), then T1(n)* T2(n) is O(f(n)*g(n))

Proof:

T1(n) is O(f(n))   c1 > 0, n1  0: T1(n)  c1 f(n)  n  n1

T2(n) is O(g(n))   c2 > 0, n2  0: T2(n)  c2 g(n)  n  n2

 T1(n)* T2(n)  (c1 * c2) f(n) * g(n)  n  max (n1, n2)  T1(n) * T2(n) is O(f(n) *g(n))

Generally speaking, if Ti(n)  ci fi(n)  n  ni; i=1, 2, …., p then:

    i
pi

p

i

i

p

i

i

p

i

i nnnfcnT




 
1

111

max ,

 which means  nT
p

i

i
1

is  










nfO
p

i

i

1

2.1.3  Notation

Definition: Computational complexity T(n) is (g(n)) if there are constants c and n0 such that: T(n)  c *

g(n)  n  n0 ; c > 0 ; n0  0

Example: T(n) = n
2
+n. It can be verified that T(n) is (n) due to the fact that T(n)  n

2
  n  0

A. Mahdoum www.ijetst.in Page 8066

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

2.1.4 Calculation of T(N)

It is obvious that O and  notations cannot be used unless T(n) is determined. The following section shows

how the function T(n) associated with a given algorithm is determined.

Example 2.3:

ALGORITHM 1: Bubble_Sort

for i=1 up to n-1

 do for j=n downto i+1

 do if Aj-1 > Aj

 then temp= Aj-1 ;

 Aj-1= Aj ;

 Aj=temp ;

 

 end if

 done

 done



i=1: j varies from n to 2, hence (n-1) processes

i=2: j varies from n to 3, hence (n-2) processes

 ………………………………

i=n-1: j varies from n to n, hence only one process

Overall, the number of processes is:

 (n-1)+(n-2)+……..+1 = S

Let us write S in a different manner:

S = 1+ 2 +………+ (n-1)

We then obtain: 2S= n + n + …………… +n = n(n-1)  S = n(n-1) /2

For each of these n(n-1)/2 processes, one condition and 3 assignments must be executed. This execution is

independent of n and therefore constant, requiring a certain CPU time d that depends on the platform on

which the algorithm is executed.

Therefore for the algorithm Bubble_Sort, we have:

 
 

d
nn

nT
2

1


Example 2.4 :

Factorial of a number

Factorial(n)

if n  1

 then {Fact=1 ; return;}

 else Fact =N * Factorial(n-1) ;

 end if



If n  1, the process is constant: d

Else, there is a constant process (c) that concerns multiplication, in addition to a process corresponding to

the recursive call Factorial(n-1): T(n-1), which is:

    1

e1




nifd

lsenTcnT

A. Mahdoum www.ijetst.in Page 8067

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

Consider n > 1. We then have: T(n-1)=c+T(n-2)  T(n)=2c+T(n-2)

By recurrence, we have: T(n) = i * c + T(n-i)

Consider n-i=1, hence i=n-1. We then have: T(n)=(n-1) * c + T(1) = (n-1)c + d

It can be easily verified that T(n) is O(n). Indeed, we should then have: (n-1)c + d  k * n  n  n0 ; k > 0 ;

n0  0, which means n(k-c)  d-c

Given that multiplication requires more time than assignment, we have d < c. With k > c, we get:

n  (d-c) / (k-c) ; k > c; given k=c+1  n  d-c  T(n)  (c+1) * n  n  0

Example 2.5: Let us consider the problem of the Tower of Hanoi. There are three rods A, B and C. There

are N disks on rod A, arranged in descending order of size from bottom to top. The objective is to move the

N disks from A to C using B (size order must be preserved on each rod). Find the computational complexity

of this problem.

As a first step, let us find the algorithm. For this purpose, the following reasoning is used:

Let us assume we know how to correctly move (N-1) disks from one rod to another, using the third rod. The

solution would then be the following:

- Correctly move (N-1) disks from A to B using C;

- Move the remaining disk (of the current larger size) from A to C;

- Move the (N-1) disks from B to C, using A (we assume we know how to correctly move the N-1

disks from one rod to another);

We then obtain the following recursive algorithm:

Hanoi(A, B, C, N) // The order of arguments is important

{

 if N = 0

 then return;

 end if

 Hanoi(A, C, B, N-1); // The order of parameters is important

 Move the remaining disk from A to C;

 Hanoi(B, A, C, N-1); // The order of parameters is important

}

The computational complexity T(N) is then equal to:

- d1 if N=0

- T(N-1) + d + T(N-1) else; d is the CPU time required for moving the remaining disk from one rod to

another.

We then have:

T(N) = 2*T(N-1) +d for N  0

By recurrence, we get: T(N-1) = 2*T(N-2)+d  T(N) = 4*T(N-2)+3d

 T(N-2) = 2*T(N-3)+d  T(N) = 8*T(N-3)+7d

 T(N-3) = 2*T(N-4)+d  T(N) = 16*T(N-4)+15d

 ………………………………..

 T(N-i) = 2*T(N-i-1)+d  T(N)=2
i+1

*T(N-i-1)+(2
i+1

-1)d

With i = N-2, we get: T(N) = 2
N-1

*T(1)+(2
N-1

 -1)d = 2
N-1

d + 2
N-1

d – d = 2
N
d – d

 Since d > 0, we have T(N)  d*2
N
  N  1  T(N) is O(2

N
)

A. Mahdoum www.ijetst.in Page 8068

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

Example 2.6: Find the computational complexity of the following algorithm:

Begin

 S=0 ;

 for i=1 up to N by step of 2

 do S = S + i ! // well read Factorial of i

 done

End

Solution:

Let us recall that the execution time of Factorial of N is equal to (N-1)d+d1

i=1 : d1+d2 (exec time of 1 ! + exec time of the sum)

i=3 : 2d+d1+d2 (exec time of 3 ! + exec time of the sum)

i=5 : 4d+d1+d2 (exec time of 5 ! + exec time of the sum)

 …………………………………..

i=N : (N-1)d+d1+d2 ; N is odd

  T(N) = (d1+d2)+(2d+d1+d2)+(4d+d1+d2) + …. (N-1)d+d1+d2 = (d1+d2)(1+(N-1)/2)+d(2+4+ …. +

(N-1))

S1= 2 + 4 + … +(N-1)

S1=(N-1)+(N-3)+ … + 2

 2S1=(N+1)(1+(N-3)/2)  S1 = (N+1)(N-1) /4  T(N) = (d1+d2)((N+1)/2) + d(N+1)(N-1) /4

 = N
2
 d/4 + N(d1+d2)/2 + (d1+d2)/2 – d/4

Let us show that T(N) is O(N
2
), which leads to:

 T(N)  C * N
2
  N  N0 ; C > 0; N0  0

 N
2
(C - d/4) – N(d1+d2)/2 – (d1+d2)/2 + d/4  0

  = (d1+d2)
2
/4 -4(C-d/4)(d/4 – (d1+d2)/2)

It is worth noting that if C=d/4, it would not be possible to have: d/4  N(d1+d2)/2 + (d1+d2)/2 (the value

of N can be large, while C and d are constant).

Let us then consider C=5d/4.

We should note that constants d, d1 and d2 are used for multiplication, assignment and addition. If

d=2(d1+d2), then we get:  = (d1+d2)
2
/4 -4d((d1+d2)/2 – (d1+d2)/2) = (d1+d2)

2
/4

 It can then be verified that the roots are: N1= 0; N2 = (d1+d2)/(2*2(d1+d2))

Between these two roots, C*N
2
 – T(N) is negative. Since the objective is to have C*N

2
 – T(N)  0, the two

parts should be considered outside the [N1, N2] interval. But if we consider N0=N1, we would not have

C*N
2
 – T(N)  0  N  N0 since in [N1, N2], we have C*N

2
 – T(N)  0. We should therefore have

N0=N2=1/4 = 1. Since C=5d/4 and f(N)=N
2
, we get T(N)  5d/4 * N

2
  N  1 and therefore T(N) is

O(N
2
).

A. Mahdoum www.ijetst.in Page 8069

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

2.2 Non-deterministic algorithm and class NP

Assume a function choice() is available, and find the answer, within a polynomial time, expressed as TRUE

or FALSE to a decision problem.

Example 2.7:

Given N numbers, find the largest among them.

ALGORITHM 2 : MAX_NON_DETERMINISTIC (N)

max=choice(a1, a2, …., aN) ;

 for i=1 up to N

 do if ai > max

 then Answer = FALSE ; exit ; 

 end if

 done

 Answer = TRUE ;



Note that this algorithm is:

- Non-deterministic because we do not know how the function choice() has defined max

- Polynomial time (its computational complexity is O(N))

The deterministic algorithm is the following:

ALGORITHM 3: MAX_DETERMINISTIC (N)

max=a1 ;

 For i=2 up to N

 Do If ai > max

 Then max=ai ;

 End if

 Done

 

This algorithm is also polynomial time, its computational complexity being O(N). Note that in general,

deterministic and non-deterministic algorithms associated with the same problem have not necessarily the

same computational complexity. It is, for example, the case of the following problem:

Example 2.8 (Satisfiability problem):

Consider X=x1, x2, ….., xn a set of Boolean variables

 E= C1 . C2 . ………… . Cm a logical expression;

The dot represents the logical operator AND; Ci is a clause where Ci = u1 + u2 + ……… + uk ; k=1, 2, ….,

n ; ui is one of the variables either complemented or not. The + represents the logical operator OR.

A. Mahdoum www.ijetst.in Page 8070

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

Example 2.9:

E=(x1 + x2 + x3

) . (x1


 + x2) . x3 ; xi


 = NOT(xi)

Let us consider the decision problem: Is there an assignment of variables xk ; k=1, 2, 3 to 0 or 1 such that

E=1?

ALGORITHM 4: SAT_NON_DETERMINISTIC (n, E)

for i=1 up to n

 do xi=choice(0, 1) ;

 done

 if E(x1, x2, ….., xn) = 1

 then answer = TRUE;

 else answer = FALSE;

 end if



This (non-deterministic) algorithm is polynomial time (of complexity O(n)). On the other hand, the

deterministic algorithm is not (complexity equal to O(2
n
)).

Hence, for a given problem, it is possible that deterministic and non-deterministic algorithms have the same

computational complexity (case of the determination of the maximal number), or not (case of the

satisfiability problem). This leads us to a first classification of problems.

Definition:

A problem  belongs to the class NP if it can be executed within a polynomial time by a NON-

DETERMINISTIC algorithm.

From this definition, the 2 problems described above (maximum of N numbers and satisfiability) both

belong to the class NP.

The problem of the maximum of N numbers can be solved in a polynomial time by a deterministic

algorithm. It therefore belongs to the class P (see further details about the deterministic Turing machine with

freely downloading a part of our book from

https://media.wiley.com/product_data/excerpt/76/17863059/1786305976-29.pdf). As this problem belongs

to class P, unlike the satisfiability problem, class P is included in class NP (note that NP is an acronym of

Non-deterministic Polynomial, and not of Non Polynomial. It would otherwise be a contradiction, since the

problem of the maximum of N numbers is polynomial and belongs to class NP).

The class NP includes polynomial, NP-complete, NP-hard and NP-intermediate problems (it also includes

some Co-NP problems -please see:

https://media.wiley.com/product_data/excerpt/76/17863059/1786305976-29.pdf)

2.2.1 Polynomial problems

Definition:

Class P is defined as a set of languages L each of which has a corresponding deterministic polynomial time

program recognizing the considered language: P = L : there is a deterministic polynomial time program for

which L = LM // LM is a language accepted by a Turing machine – for further details, please see:

https://media.wiley.com/product_data/excerpt/76/17863059/1786305976-29.pdf

A. Mahdoum www.ijetst.in Page 8071

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

2.2.2 NP-complete problems

Definition:

A language L1 is NP-complete if:

- L1  NP

- L2  L1  L2  NP ( is a polynomial transformation – for further details, please see:

https://media.wiley.com/product_data/excerpt/76/17863059/1786305976-29.pdf)

Theorem:

If: - P1 is NP-complete

- P1  P2

- P2  NP

Then: P2 is NP-complete

Proof:

P1 is NP-complete  P1  NP  P3  P1  P3  NP (by definition)

According to the hypothesis, P1  P2  P3  P2 ( is transitive) and P2  NP  P2 is NP-complete

Conjecture:

For NP-complete problems, there is no algorithm giving the exact solution within polynomial time. This is

nevertheless just a conjecture. To this day, we conjecture that there is no exact and polynomial time

algorithm for NP-complete problems.

2.2.3 NP-Hard problems

Let us recall that polynomial time problems can be executed by a deterministic Turing machine. Those of

class NP (and of class P) are executed by a non-deterministic Turing machine. Before defining the NP-hard

problems, let us now consider the Oracle Turing Machine involving a module (oracle) that executes a

program P1.

Definition:

A polynomial Turing reduction of problem P2 to problem P1 (denoted P2 T P1) is a transformation that

enables the polynomial-time resolution of P2 through the algorithm of P1 if the resolution of P1 is assumed of

computational complexity O(1).

In other terms, this involves:

- Stage 1: Transforming the data of P2 into data of P1

- Stage 2: Solving P1 by means of a module (oracle)

- Stage 3: Transforming the results of P1 into results of P2

Assuming the complexity of stage 2 is O(1), if stages 1 and 3 have polynomial time complexity, then it can

be said that P2 T P1.

Definition:

A problem P2 is NP-hard (NP-difficult) if there is an NP-complete problem P1 such that P1 T P2.

According to the conjecture P  NP, therefore an NP-hard problem cannot reach the exact solution within

polynomial time (NP-hard problems are the most difficult in the class NP).

NOTE:  and T should not be confused (further details about  and T are found in:

https://media.wiley.com/product_data/excerpt/76/17863059/1786305976-29.pdf).

2.2.4 NP-Intermediate Problems

Certain problems of class NP are neither polynomial, nor NP-complete, nor NP-hard (see Figure 2.1).

Informally speaking, they are more complicated than the polynomial problems, and less complicated than

the NP-complete problems.

A. Mahdoum www.ijetst.in Page 8072

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

In order to prove that a problem P1 is NP-intermediate, one must prove that:

- P1 belongs to the class NP (it can be solved by a Nondeterministic Polynomial algorithm)

- P1 cannot be solved in a deterministic manner within a polynomial time (ie P1  class P)

- There is no polynomial transformation of an arbitrary NP-complete problem P2 into problem P1

(meaning that P1 is not NP-complete)

Example 2.10:

Given 2 graphs G=(V, E) and G’=(V’, E’), are G and G’ isomorphic? Namely, is there a one-to-one function

f : V  V’ such that: (u, v)  E if and only if (f(u), f(v))  E’ ?

This problem is neither proved P nor NP-complete [2]. As it belongs to NP (it can be solved by a Non-

deterministic Polynomial algorithm), it is then NP-intermediate one.

Figure 2.1: The class NP.

It is worth noting that polynomial-time problems are exactly solved while intractable ones need heuristic- or

metaheuristic- based methods to reach a solution. Several conventional meta-heuristics are used but note that

obtaining a near-optimal solution (or an optimal solution for some problem instances) does not depend on

the application of such or such method, but rather on other criteria (initializations, moving one solution to

another, exploration of the solution space, etc.)
[1,3]

.

3 Formal Proof That P  NP

As NP-intermediate and NP-complete problems belong to NP (some of Co-NP and NP-hard ones also

belong to NP), it is sufficient to prove that one of these problems is not polynomial time in order to formally

claim that P  NP. To do this, we consider the graph-isomorphism problem which belongs to NP. This

problem is defined as follows:

Given 2 graphs G=(V, E) and G’=(V’, E’), are G and G’ isomorphic? Namely, is there a one-to-one function

f : V  V’ such that: (u, v)  E if and only if (f(u), f(v))  E’ ?

Let us consider the 2 following cases:

Class of

NP-complete

problems

Class P

Class NP

 NP-hard

problems

 NP intermediate

problems

A. Mahdoum www.ijetst.in Page 8073

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

3.1 Function f is known

It is easy to assert that the 2 graphs depicted in Fig. 3.1 are isomorphic according to function f: val(v) = 2 *

val (u); u  V1, v  V2; v=f(u).

 (a) (b)

Figure 3.1 Graph instances (a) G1 = (V1, E1) (b) G2 = (V2, E2). G1 and G2 are isomorphic according to

function f: val(v) = 2 * val (u); u  V1, v  V2; v=f(u).

G1 and G2 can be represented by the 2 following lists:

It is obvious that if node 25  V1 and is not connected to any other node, L1 would include this structure

member:

A simple algorithm to check if G1 and G2 are isomorphic is the following:

ALGORITHM 5: DETERM_POLYN_GRAPH_ISOM_ALG (f, G1, G2)

{

 if(|E1|  |E2|)

 then {print(“ G1 and G2 are not isomorphic”);

 exit(); // The algorithm terminates

 }

 end if

 W = ; // W is the set of the explored edges (v1, v2)  E2 such that: (v1, v2) = (f(u1), f(u2)) OR

 (v2, v1) = (f(u1), f(u2)); (u1, u2)  E1

 for each (u1, u2)  E1

 do {found = 0;

 for each (v1, v2)  E2 - W

 do if (v1, v2) = (f(u1), f(u2)) OR (v2, v1) = (f(u1), f(u2))

 then {found = 1;

 W = W  {(v1, v2)};

 break; // exit the inner loop

 }

 end if

9

8

7

6

5

4 3

2

1

10

12

8

20

16

6

14 4

2

18

10

 25 -

L1:

L2:

 2 9 5 4 7 10

 1 6

 2 12 6 16 20 14

 8 3 NIL

 10 8 NIL 18 4

A. Mahdoum www.ijetst.in Page 8074

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

 done

 if (found = 0)

 then {print(“ G1 and G2 are not isomorphic”);

 exit(); // The algorithm terminates

 }

 end if

 }

 Done

 print(“ G1 and G2 are isomorphic”);

 }

- For the 1
st
 edge in L1, there are, in the worst case, |E2| searches. The worst case happens when

“found” remains 0 with the exploration of |E2|-1 members of L2;

- For the 2
nd

 edge in L1, there are, in the worst case, |E2|-1 searches (thanks to W, the number of edges

to be explored in L2 is reduced);

- etc.

- For the last edge in E1, there is a single search.

 The total number of searches is then:

S = M + (M-1) + ….. + 1; M = |E2|

 = 1 + 2 + …... + M (rewriting S in the reverse order)

  2S = (M+1) + (M+1) + ….. + (M+1) = M* (M+1)  S = M * (M+1) / 2

Thus, the time complexity of the previous algorithm is O(M
2
), which is polynomial time. In other words,

if the function f is known, the “Graph-isomorphism” problem belongs to the class P (not to the

intermediate one).

3.2 A formal proof that P  NP (Function f is unknown)

Unfortunately, according to the formal definition of the Graph-isomorphism problem, the function f is

unknown (“Is there a one-to-one function f such that” etc.).

It is obvious that we only need to prove that the Graph-isomorphism problem belongs to NP, but it is

outside class P. According to the definition we previously gave, a problem belongs to NP if it can be solved

by a Non-deterministic Polynomial algorithm. We give hereafter such an algorithm:

ALGORITHM 6: NON_DETERM_POLYN_GRAPH_ISOM_ALG (G1, G2)

{

 // G1 = (V1, E1) and G2 = (V2, E2) are 2 graph instances

 if (|E1|  |E2|)

 then {Answer = “FALSE”;

 exit(); // the algorithm terminates

 }

 endif

 f = choice (F); // selecting function f from the set F

 // Write here the algorithm corresponding to the case in which function f is known, beginning with the

instruction W =  till the end of that algorithm. However, replace the statements print(“ G1 and G2 are
not isomorphic”); and print(“ G1 and G2 are isomorphic”); with Answer=“FALSE”; and Answer =

“TRUE”, respectively.

// Note that ALGORITHM 5 is deterministic while the present one is non-deterministic.

}

- This algorithm is polynomial time since its computational complexity is O(|E2|
2
);

- It is Non-deterministic because function f is selected in a manner that is beyond our grasp

A. Mahdoum www.ijetst.in Page 8075

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

Thus, according to the definition, the Graph-isomorphism problem belongs to NP.

Let us now prove that it does not belong to class P. In other words, let us prove that the deterministic

associated algorithm is not polynomial time.

Let us assume that |E1| = |E2| (otherwise, G1 and G2 could not be isomorphic).

Notation: Let ei fk ej
’
means (vj1 = fk(ui1) AND vj2 = fk(ui2)) OR (vj2 = fk(ui1) AND vj1 = fk(ui2));

 ei = (ui1 , ui2)  E1 and ej
’
= (vj1 , vj2)  E2

An obvious way to retrieve function fk that prospectively makes G1 and G2 isomorphic is the following:

Let us assume that e1 fk e1
’
is O(1), thus fk is determined in polynomial time. In order to make G1 and G2

isomorphic according to function fk, we need:

 e2 fk e2
’
AND e3 fk e3

’
... AND eM fk eM

’
 (M = |E2|) OR

 e2 fk e3
’
AND e3 fk e2

’
... AND eM fk eM

’
 OR

 …

 OR

e2 fk eM
’
AND e3 fk eM-1

’
... AND eM fk e2

’

But G1 and G2 could be non isomorphic according to fk. Thus, we have to determine ANOTHER function

fk, for example, the one that is determined from e1 and e2’: e1 fk e2
’
. G1 and G2 will be prospectively

isomorphic according to the new function fk if:

 e2 fk e1
’
AND e3 fk e3

’
... AND eM fk eM

’
 (M = |E2|) OR

 e2 fk e3
’
AND e3 fk e1

’
... AND eM fk eM

’
 OR

 …

 OR

e2 fk eM
’
AND e3 fk eM-1

’
... AND eM fk e1

’

Again, G1 and G2 could be non isomorphic according to this new function fk. The computational

complexity which is determined from the worst case consists to consider ALL the possibilities, namely:

e1 fk e1
’
AND e2 fk e2

’
... AND eM fk eM

’
 OR

e1 fk e2
’
AND e2 fk e1

’
... AND eM fk eM

’
 OR

 …

 OR

e1 fk eM
’
AND e2 fk eM-1

’
... AND eM fk e1

’

The number of attempts to determine the function fk that prospectively makes G1 and G2 isomorphic is

then: M ! (please read Factorial of M).

For each of these M ! attempts, checking whether G1 and G2 are isomorphic according to the interested

function fk is O(M) (not O(M
2
) because in this case, for each edge in E1 a SINGLE search is done in E2).

Thus, the time complexity of this problem is O(M ! * M), which is not polynomial.

In our proof, even if the function fk could be determined in polynomial time, checking whether G1 and G2

are isomorphic (according to fk) or not is NOT polynomial time. In reality, given 2 any graph instances, it

is not obvious to define the function f (please see Figure 3.2). Indeed, it should be retrieved from an

INFINITE set F:

F= {val(v)=val(u)-1, val(v)=log5(4+val(u)), val(v)=2*val(u), val(v) = sqrt(97+val(u))*3, ……};

In this case, one should pick, successively, a new function f from the INFINITE set F, then check among

the M ! (factorial of M) possibilities whether G1 and G2 are isomorphic. In other words, the time

complexity of the interested problem could not be polynomial (whether f is determined in polynomial

time or not).

A. Mahdoum www.ijetst.in Page 8076

IJETST- Vol.||11||Issue||05||Pages 8064-8076||February||ISSN 2348-9480 2024

Thus, P  NP.

Figure 3.2: These 2 Graphs are isomorphic, according to the function f I myself defined. Could someone

retrieve this function ?

4 Conclusion

In this paper, we recalled fundamental notions of computational complexity (further details that help better

understand the notions given in Section 2 can be freely downloaded from:

https://media.wiley.com/product_data/excerpt/76/17863059/1786305976-29.pdf) and showed that the

Graph-isomorphism problem belongs to class NP. We then demonstrated that this problem does not belong

to class P. Thus, we formally claim that P  NP.

References

1. Mahdoum "CAD of Circuits and Integrated Systems" Wiley (1
st
 ed.), October 2020, Hoboken, USA.

2. M.R. Garey, D.S. Johnson "Computers and Intractability: a Guide to the Theory of NP-

Completeness" Freeman (1
st
 ed.), 1979, San Fransisco, USA.

3. Mahdoum "Book review: Representations for genetic and evolutionary algorithms, written by F.

Rothlauf" J. The Computer 49, 5 (September 2006).

1

2

15984

29017

